flexmeasures.data.models.forecasting.pipelines.train
Classes
- class flexmeasures.data.models.forecasting.pipelines.train.TrainPipeline(sensors: dict[str, int], regressors: list[str], future_regressors: list[str], target: str, model_save_dir: str, n_hours_to_predict: int, max_forecast_horizon: int, forecast_frequency: int = 1, event_starts_after: datetime | None = None, event_ends_before: datetime | None = None, probabilistic: bool = False)
- __init__(sensors: dict[str, int], regressors: list[str], future_regressors: list[str], target: str, model_save_dir: str, n_hours_to_predict: int, max_forecast_horizon: int, forecast_frequency: int = 1, event_starts_after: datetime | None = None, event_ends_before: datetime | None = None, probabilistic: bool = False) None
Initialize the TrainPipeline.
- Parameters:
sensors – Dictionary mapping custom regressor names to sensor IDs.
regressors – List of custom regressor names.
target – Custom target name.
model_save_dir – Directory where the trained model will be saved.
n_hours_to_predict – Number of hours to predict into the future.
max_forecast_horizon – Maximum forecast horizon in hours.
event_starts_after – Only consider events starting after this time.
event_ends_before – Only consider events ending before this time.
- run(counter: int)
Runs the training pipeline.
This function loads the data, splits it into training and testing sets, trains multiple models on the training set, and saves the trained models.
- train_model(model, future_covariates: TimeSeries, past_covariates: TimeSeries, y_train: TimeSeries)
Trains the specified model using the provided training data.